Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

نویسندگان

  • Arnaud Bataille
  • Scott D Cashins
  • Laura Grogan
  • Lee F Skerratt
  • David Hunter
  • Michael McFadden
  • Benjamin Scheele
  • Laura A Brannelly
  • Amy Macris
  • Peter S Harlow
  • Sara Bell
  • Lee Berger
  • Bruce Waldman
چکیده

The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations

Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis suscepti...

متن کامل

MHC genotypes associate with resistance to a frog-killing fungus.

The emerging amphibian disease chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian populations and species differ in susceptibility to Bd, yet we know surprisingly little about the genetic basis of this natural variation. MHC loci encode peptides that initiate acquired immunity in vertebrates, making them likely candidates for determining disease sus...

متن کامل

A Case of Probable MHC Class II Deficiency with Disseminated BCGitis

Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficien...

متن کامل

Drift Rather than Selection Dominates MHC Class II Allelic Diversity Patterns at the Biogeographical Range Scale in Natterjack Toads Bufo calamita

Study of major histocompatibility complex (MHC) loci has gained great popularity in recent years, partly due to their function in protecting vertebrates from infections. This is of particular interest in amphibians on account of major threats many species face from emergent diseases such as chytridiomycosis. In this study we compare levels of diversity in an expressed MHC class II locus with ne...

متن کامل

Presentation of a Self-peptide in Two Distinct Conformations by a Disease-associated HLA-B27 Subtype

The MHC locus on human chromosome 6 harbors the most polymorphic genes in the human genome, and the large number of alleles in human populations has permitted key structural features of MHC class I and class II genes that influence susceptibility to several human autoimmune diseases to be delineated. In this issue, Hülsmeyer et al. adds a new twist to the already rich literature on MHC polymorp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 282  شماره 

صفحات  -

تاریخ انتشار 2015